# TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023) 

Avrim Blum and Ali Vakilian

Lecture 17: Random walks on graphs 2

## Recap

- Random walks on undirected graphs: hitting time, commute time, cover time.
- Stationary distribution of random walk: uniform over edge/directions, or equivalently each node has probability proportional to its degree.
- Theorem: If G is a connected graph with n vertices and m edges, then $\operatorname{Cov}_{G} \leq$ $2 m(n-1)$.
- Electrical networks and connections to random walks.


## Something completely different(?): electrical networks



Consider a graph $G$ where on each edge we have a resistor of some resistance.

- Say we connect a battery of some voltage $V_{b a t t}$ between two nodes A and B (so $V_{A}-V_{B}=$ $V_{b a t t}$, and let's for convenience say $V_{B}=0$ ).
- Then each node in the graph will have a voltage (also called "potential") and each edge will have some current flowing in some direction.

Can think of voltage as like "height", and resistors like little water wheels or filters.

## Something completely different(?): electrical networks



Voltages and currents can be computed using the following two rules.

- Kirchoff's law: current is like water flow: for any node not connected to the battery, flow in = flow out.
- Ohm's law: $V=I R$. Here, $R$ is resistance, $V$ is the voltage drop, and $I$ is the current flow.

Effective resistance $R_{u v}$ between $u$ and $v$ : connect up battery, measure current, $R_{u v}=\frac{V}{I}$.

## Electrical networks and random walks

Consider a graph $G$, fix two distinguished nodes $\mathrm{A}, \mathrm{B}$.

Consider a random walk.
Let $p_{u}$ be the probability a random walk starting from $u$ reaches $A$ before it reaches $B$.


Consider placing a 1 -volt battery between $A$ and $B$

Let $V_{u}$ be the voltage at node $u$.

$$
\text { Then } p_{u}=V_{u} \text {. }
$$

- Solving for $p_{u}: p_{A}=1, p_{B}=0$, and for all $u \notin\{A, B\}$ we have $p_{u}=\frac{1}{\operatorname{deg}(u)} \sum_{v:\{u, v\} \in E} p_{v}$.
- Solving for $V_{u}: V_{A}=1, V_{B}=0$, and for all $u \notin\{A, B\}$ we have flow in = flow out, which means $V_{u}=\frac{1}{\operatorname{deg}(u)} \sum_{v:\{u, v\} \in E} V_{v}$.


## Another connection: effective resistance and commute time



Theorem: In a connected graph $G$ with $m$ edges, each of which is a unit resistor, for any two nodes $u, v$ we have $C_{u v}=2 m R_{u v}$.

- For example, on a line graph of $n$ nodes and $n-1$ edges, the commute time between the two endpoints is exactly $2(n-1)^{2}$.
- Note that if $u, v$ are neighbors then $R_{u v} \leq 1$, so $C_{u v} \leq 2 m$. (So, this is another proof of the main lemma from last time).


## Another connection: effective resistance and commute time

Example computation of effective resistance


Theorem: In a connected graph $G$ with $m$ edges, each of which is a unit resistor, for any two nodes $u, v$ we have $C_{u v}=2 m R_{u v}$.

## Key lemma

Lemma: Fix some vertex $v$. For each node $x \neq v$, place battery of voltage $H_{x v}$ with positive terminal at $x$ and negative terminal at $v$. Then $\operatorname{deg}(x)$ current will flow out of each $x \neq v$ and $2 m-\operatorname{deg}(v)$ current will flow into $v$.

## Proof:

- Let's define $v$ to have voltage 0 , so each node $x$ has voltage $H_{x v}\left(H_{v v}=0\right)$.
- For $x \neq v$, by definition of hitting time: $H_{x v}=1+\frac{1}{\operatorname{deg}(x)} \sum_{w:\{x, w\} \in E} H_{w v}$
- Current on edge $(x, w)$ is $\left(V_{x}-V_{w}\right) / 1$. So, total current flowing out of $x \neq v$ is:

$$
\sum_{w:\{x, w\} \in E} V_{x}-V_{w}=\sum_{w:\{x, w\} \in E} H_{x v}-H_{w v}=\operatorname{deg}(x) \cdot H_{x v}-\sum_{w:\{x, w\} \in E} H_{w v}=\operatorname{deg}(x) .
$$

- And so $2 m-\operatorname{deg}(v)$ current is flowing into $v$.


## Key lemma \#2

Lemma: Fix some vertex $v$. For each node $x \neq v$, place battery of voltage $H_{x v}$ with positive terminal at $x$ and negative terminal at $v$. Then $\operatorname{deg}(x)$ current will flow out of each $x \neq v$ and $2 m-\operatorname{deg}(v)$ current will flow into $v$.

Lemma: Fix some vertex $u$. For each node $x \neq u$, place battery of voltage $H_{x u}$ with negative terminal at $x$ and positive terminal at $u$. Then $\operatorname{deg}(x)$ current will flow into each $x \neq u$ and $2 m-\operatorname{deg}(u)$ current will flow out of $u$.

Proof: Same (or by symmetry: if you reverse all the batteries, you reverse all the currents).

Now, let's prove the theorem from the two lemmas.

## Proof of theorem from lemmas

Lemma: Fix some vertex $v$. For each node $x \neq v$, place battery of voltage $H_{x v}$ with positive terminal at $x$ and negative terminal at $v$. Then $\operatorname{deg}(x)$ current will flow out of each $x \neq v$ and $2 m-\operatorname{deg}(v)$ current will flow into $v$.

Lemma: Fix some vertex $u$. For each node $x \neq u$, place battery of voltage $H_{x u}$ with negative terminal at $x$ and positive terminal at $u$. Then $\operatorname{deg}(x)$ current will flow into each $x \neq u$ and $2 m-\operatorname{deg}(u)$ current will flow out of $u$.

- Consider adding the voltages from the two experiments. So, voltage drop from $u$ to $v$ of $H_{u v}+H_{v u}=C_{u v}$.
- If add voltages, then currents add too by linearity. This gives us $2 m$ units of current flowing out of $u$ and $2 m$ flowing into $v$.
- Since no current flowing into/out of any other node, can view as just a battery between $u$ and $v$.
- Using $V=I R$ we get $C_{u v}=2 m \cdot R_{u v}$.


## Markov Chains

A Markov Chain can be thought of as a random walk on a weighted directed graph:

- $n$ states.
- An $n \times n$ transition matrix $P$ where $P_{i j}$ is the probability of moving to state $j$ given that you currently are in state $i$.
- If you describe your current state as a row vector $q$ then your next state is $q P$.
- Often used to describe probabilistic processes.


## Markov Chain Example

Say you are planning to work on your homework but are easily distracted:


## More definitions

A Markov Chain can be thought of as a random walk on a weighted directed graph:

- $n$ states.
- An $n \times n$ transition matrix $P$ where $P_{i j}$ is the probability of moving to state $j$ given that you currently are in state $i$.
- If you describe your current state as a row vector $q$ then your next state is $q P$.
- If underlying graph (directed edges with nonzero probability) is strongly connected, then it's irreducible.
- Irreducible Markov Chain is aperiodic if for every start state $q$ there exists some $T$ such that $q P^{T}$ has nonzero probability on every state.

For example, a random walk on a complete bipartite graph would be irreducible but not aperiodic. If you add self-loops, then it becomes aperiodic.

## More definitions

A Markov Chain can be thought of as a random walk on a weighted directed graph:

- $n$ states.
- An $n \times n$ transition matrix $P$ where $P_{i j}$ is the probability of moving to state $j$ given that you currently are in state $i$.
- If you describe your current state as a row vector $q$ then your next state is $q P$.
- If underlying graph (directed edges with nonzero probability) is strongly connected, then it's irreducible.
- Irreducible Markov Chain is aperiodic if for every start state $q$ there exists some $T$ such that $q P^{T}$ has nonzero probability on every state.
- A stationary distribution $\pi$ is a left eigenvector of eigenvalue 1 . That is, $\pi=\pi P$.


## Stationary distributions

- A stationary distribution $\pi$ is a left eigenvector of eigenvalue 1 . That is, $\pi=\pi P$.
- This is the largest eigenvalue, because for any vector $v$ (even if it has negative entries), the sum of absolute values cannot increase when multiplying by $P$. I.e., $\|v\|_{1} \geq\|v P\|_{1}$.
- Because every row $P_{i}$ sums to 1 , so $\left|v_{i}\right|=\sum_{j}\left|v_{i} P_{i j}\right|$. So, $\|v P\|_{1} \leq \sum_{i}\left\|v_{i} P_{i}\right\|_{1}=\|v\|_{1}$.


## Symmetric Markov chains

A Markov chain is symmetric if $P$ is symmetric. E.g., a random walk on an undirected graph where every node has the same degree.

- For a symmetric Markov chain, all column sums are 1 , so the stationary distribution is uniform. ["The" stationary distribution if the MC is connected, else "a" stationary distribution if not]
- One way to see it: columns summing to one and $\pi=\pi P$ means that each $\pi_{i}$ is a weighted average of the others. [can you see the rest of the proof?]


## Rapid Mixing

Often we will want to define a Markov chain on a "solution space" whose size is exponential in the natural problem parameters. E.g., each state could be an assignment of values to $n$ variables.

In this case, we have no hope to visit the entire state space, but perhaps we can more quickly approach the stationary distribution?

A Markov chain is rapidly mixing if can get close to stationary in $\operatorname{polylog}(n)$ steps.
Example: random walk on the cube $\{0,1\}^{d}$. Here $n=2^{d}$. To make this aperiodic, let's say that at each step we stay put with probability $1 / 2$.
$>$ Equivalent walk: at each step, pick a random coordinate, replace with uniform random 0/1 value.

## Rapid Mixing

Theorem 2.1 Say P is a Markov chain with real eigenvalues and orthogonal eigenvectors. Then, for any starting distribution $q^{(0)}$, the $L_{2}$ distance between the distribution after $T$ steps $q^{(T)}=$ $q^{(0)} P^{T}$ and the stationary distribution $\pi$ is at most $\left|\lambda_{2}\right|^{T}$ where $\lambda_{2}$ is the eigenvalue of largest absolute value among eigenvectors orthogonal to $\pi$.

- So, if $\left|\lambda_{2}\right| \leq 1-\epsilon$, then for any constant $c$ it takes only $T=O\left(\frac{\log n}{\epsilon}\right)$ steps to get $\left\|q^{(T)}-\pi\right\|_{2} \leq 1 / n^{c}$.
- What happened to irreducibility and aperiodicity? If reducible or periodic, then $\left|\lambda_{2}\right|=1$ so theorem is vacuous. E.g., complete bipartite graph has eigenvector with all nodes on the left assigned $1 / n$ and all nodes on the right assigned $-1 / n$ with eigenvalue -1 .


## Rapid Mixing

Theorem 2.1 Say P is a Markov chain with real eigenvalues and orthogonal eigenvectors. Then, for any starting distribution $q^{(0)}$, the $L_{2}$ distance between the distribution after $T$ steps $q^{(T)}=$ $q^{(0)} P^{T}$ and the stationary distribution $\pi$ is at most $\left|\lambda_{2}\right|^{T}$ where $\lambda_{2}$ is the eigenvalue of largest absolute value among eigenvectors orthogonal to $\pi$.

## Proof:

- Let's say the orthogonal eigenvectors are $v_{1}, \ldots, v_{n}$ with $v_{1}=\pi$.
- They form a basis, so can write $q^{(0)}=c_{1} \pi+c_{2} v_{2}+c_{3} v_{3}+\cdots+c_{n} v_{n}$ for some $c_{1}, \ldots, c_{n}$.
- After $T$ steps, we have $q^{(T)}=c_{1} \pi+c_{2} \lambda_{2}^{T} v_{2}+c_{3} \lambda_{3}^{T} v_{3}+\cdots+c_{n} \lambda_{n}^{T} v_{n}$.
- Assuming $\left|\lambda_{2}\right|<1$ (else the theorem is vacuously true) note that this approaches $c_{1} \pi$ as $T \rightarrow \infty$. This means we must have $c_{1}=1$.

Theorem 2.1 Say P is a Markov chain with real eigenvalues and orthogonal eigenvectors. Then, for any starting distribution $q^{(0)}$, the $L_{2}$ distance between the distribution after $T$ steps $q^{(T)}=$ $q^{(0)} P^{T}$ and the stationary distribution $\pi$ is at most $\left|\lambda_{2}\right|^{T}$ where $\lambda_{2}$ is the eigenvalue of largest absolute value among eigenvectors orthogonal to $\pi$.

## Proof:

- Let's say the orthogonal eigenvectors are $v_{1}, \ldots, v_{n}$ with $v_{1}=\pi$.
- They form a basis, so can write $q^{(0)}=c_{1} \pi+c_{2} v_{2}+c_{3} v_{3}+\cdots+c_{n} v_{n}$ for some $c_{1}, \ldots, c_{n}$.
- After $T$ steps, we have $q^{(T)}=c_{1} \pi+c_{2} \lambda_{2}^{T} v_{2}+c_{3} \lambda_{3}^{T} v_{3}+\cdots+c_{n} \lambda_{n}^{T} v_{n}$.
- So, $\left\|q^{(T)}-\pi\right\|_{2}=\left\|c_{2} \lambda_{2}^{T} v_{2}+\cdots+c_{n} \lambda_{n}^{T} v_{n}\right\|_{2} \leq\left|\lambda_{2}\right|^{T} \cdot\left\|c_{2} v_{2}+\cdots+c_{n} v_{n}\right\|_{2} \leq\left|\lambda_{2}\right|^{T}$.

$$
\text { Since }\left\|q^{(0)}\right\|_{2} \leq\left\|q^{(0)}\right\|_{1}=1
$$

## That's it....

- Final exam will be made available on Monday.
- Can download and take it when you like: you have 24 hours to turn it in from the time you download the exam. Turn it in via dropbox link.
- All exams should be turned in by 11:59pm Friday night May 26 (11:59pm Thursday night if you are graduating this quarter)
- Please also fill in the course evals - we read them all and they are useful to us in improving the course.

